FreeRDP
Loading...
Searching...
No Matches
cpu-features.c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r10e?: Add MIPS MSA feature.
32 *
33 * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
34 *
35 * NDK r8d: Add android_setCpu().
36 *
37 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
38 * VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
39 *
40 * Rewrite the code to parse /proc/self/auxv instead of
41 * the "Features" field in /proc/cpuinfo.
42 *
43 * Dynamically allocate the buffer that hold the content
44 * of /proc/cpuinfo to deal with newer hardware.
45 *
46 * NDK r7c: Fix CPU count computation. The old method only reported the
47 * number of _active_ CPUs when the library was initialized,
48 * which could be less than the real total.
49 *
50 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
51 * for an ARMv6 CPU (see below).
52 *
53 * Handle kernels that only report 'neon', and not 'vfpv3'
54 * (VFPv3 is mandated by the ARM architecture is Neon is implemented)
55 *
56 * Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
57 *
58 * Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
59 * android_getCpuFamily().
60 *
61 * NDK r4: Initial release
62 */
63
64#include "cpu-features.h"
65
66#include <dlfcn.h>
67#include <errno.h>
68#include <fcntl.h>
69#include <pthread.h>
70#include <stdio.h>
71#include <stdlib.h>
72#include <string.h>
73#include <sys/system_properties.h>
74#include <unistd.h>
75#include <winpr/wtypes.h>
76#include <winpr/debug.h>
77
78static pthread_once_t g_once;
79static int g_inited;
80static AndroidCpuFamily g_cpuFamily;
81static uint64_t g_cpuFeatures;
82static int g_cpuCount;
83
84#ifdef __arm__
85static uint32_t g_cpuIdArm;
86#endif
87
88static const int android_cpufeatures_debug = 0;
89
90#define D(...) \
91 do \
92 { \
93 if (android_cpufeatures_debug) \
94 { \
95 printf(__VA_ARGS__); \
96 fflush(stdout); \
97 } \
98 } while (0)
99
100#ifdef __i386__
101static __inline__ void x86_cpuid(int func, int values[4])
102{
103 int a, b, c, d;
104 /* We need to preserve ebx since we're compiling PIC code */
105 /* this means we can't use "=b" for the second output register */
106 __asm__ __volatile__("push %%ebx\n"
107 "cpuid\n"
108 "mov %%ebx, %1\n"
109 "pop %%ebx\n"
110 : "=a"(a), "=r"(b), "=c"(c), "=d"(d)
111 : "a"(func));
112 values[0] = a;
113 values[1] = b;
114 values[2] = c;
115 values[3] = d;
116}
117#elif defined(__x86_64__)
118static __inline__ void x86_cpuid(int func, int values[4])
119{
120 int64_t a, b, c, d;
121 /* We need to preserve ebx since we're compiling PIC code */
122 /* this means we can't use "=b" for the second output register */
123 __asm__ __volatile__("push %%rbx\n"
124 "cpuid\n"
125 "mov %%rbx, %1\n"
126 "pop %%rbx\n"
127 : "=a"(a), "=r"(b), "=c"(c), "=d"(d)
128 : "a"(func));
129 values[0] = a;
130 values[1] = b;
131 values[2] = c;
132 values[3] = d;
133}
134#endif
135
136/* Get the size of a file by reading it until the end. This is needed
137 * because files under /proc do not always return a valid size when
138 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
139 */
140static int get_file_size(const char* pathname)
141{
142 int fd, result = 0;
143 char buffer[256];
144 fd = open(pathname, O_RDONLY);
145
146 if (fd < 0)
147 {
148 char ebuffer[256] = { 0 };
149 D("Can't open %s: %s\n", pathname, winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
150 return -1;
151 }
152
153 for (;;)
154 {
155 int ret = read(fd, buffer, sizeof buffer);
156
157 if (ret < 0)
158 {
159 char ebuffer[256] = { 0 };
160 if (errno == EINTR)
161 continue;
162
163 D("Error while reading %s: %s\n", pathname,
164 winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
165 break;
166 }
167
168 if (ret == 0)
169 break;
170
171 result += ret;
172 }
173
174 close(fd);
175 return result;
176}
177
178/* Read the content of /proc/cpuinfo into a user-provided buffer.
179 * Return the length of the data, or -1 on error. Does *not*
180 * zero-terminate the content. Will not read more
181 * than 'buffsize' bytes.
182 */
183static int read_file(const char* pathname, char* buffer, size_t buffsize)
184{
185 int fd, count;
186 fd = open(pathname, O_RDONLY);
187
188 if (fd < 0)
189 {
190 char ebuffer[256] = { 0 };
191 D("Could not open %s: %s\n", pathname, winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
192 return -1;
193 }
194
195 count = 0;
196
197 while (count < (int)buffsize)
198 {
199 int ret = read(fd, buffer + count, buffsize - count);
200
201 if (ret < 0)
202 {
203 char ebuffer[256] = { 0 };
204 if (errno == EINTR)
205 continue;
206
207 D("Error while reading from %s: %s\n", pathname,
208 winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
209
210 if (count == 0)
211 count = -1;
212
213 break;
214 }
215
216 if (ret == 0)
217 break;
218
219 count += ret;
220 }
221
222 close(fd);
223 return count;
224}
225
226#ifdef __arm__
227/* Extract the content of a the first occurrence of a given field in
228 * the content of /proc/cpuinfo and return it as a heap-allocated
229 * string that must be freed by the caller.
230 *
231 * Return NULL if not found
232 */
233static char* extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
234{
235 int fieldlen = strlen(field);
236 const char* bufend = buffer + buflen;
237 char* result = NULL;
238 int len;
239 const char *p, *q;
240 /* Look for first field occurrence, and ensures it starts the line. */
241 p = buffer;
242
243 for (;;)
244 {
245 p = memmem(p, bufend - p, field, fieldlen);
246
247 if (p == NULL)
248 goto EXIT;
249
250 if (p == buffer || p[-1] == '\n')
251 break;
252
253 p += fieldlen;
254 }
255
256 /* Skip to the first column followed by a space */
257 p += fieldlen;
258 p = memchr(p, ':', bufend - p);
259
260 if (p == NULL || p[1] != ' ')
261 goto EXIT;
262
263 /* Find the end of the line */
264 p += 2;
265 q = memchr(p, '\n', bufend - p);
266
267 if (q == NULL)
268 q = bufend;
269
270 /* Copy the line into a heap-allocated buffer */
271 len = q - p;
272 result = malloc(len + 1);
273
274 if (result == NULL)
275 goto EXIT;
276
277 memcpy(result, p, len);
278 result[len] = '\0';
279EXIT:
280 return result;
281}
282
283/* Checks that a space-separated list of items contains one given 'item'.
284 * Returns 1 if found, 0 otherwise.
285 */
286static int has_list_item(const char* list, const char* item)
287{
288 const char* p = list;
289 int itemlen = strlen(item);
290
291 if (list == NULL)
292 return 0;
293
294 while (*p)
295 {
296 const char* q;
297
298 /* skip spaces */
299 while (*p == ' ' || *p == '\t')
300 p++;
301
302 /* find end of current list item */
303 q = p;
304
305 while (*q && *q != ' ' && *q != '\t')
306 q++;
307
308 if (itemlen == q - p && !memcmp(p, item, itemlen))
309 return 1;
310
311 /* skip to next item */
312 p = q;
313 }
314
315 return 0;
316}
317#endif /* __arm__ */
318
319/* Parse a number starting from 'input', but not going further
320 * than 'limit'. Return the value into '*result'.
321 *
322 * NOTE: Does not skip over leading spaces, or deal with sign characters.
323 * NOTE: Ignores overflows.
324 *
325 * The function returns NULL in case of error (bad format), or the new
326 * position after the decimal number in case of success (which will always
327 * be <= 'limit').
328 */
329static const char* parse_number(const char* input, const char* limit, int base, int* result)
330{
331 const char* p = input;
332 int val = 0;
333
334 while (p < limit)
335 {
336 int d = (*p - '0');
337
338 if ((unsigned)d >= 10U)
339 {
340 d = (*p - 'a');
341
342 if ((unsigned)d >= 6U)
343 d = (*p - 'A');
344
345 if ((unsigned)d >= 6U)
346 break;
347
348 d += 10;
349 }
350
351 if (d >= base)
352 break;
353
354 val = val * base + d;
355 p++;
356 }
357
358 if (p == input)
359 return NULL;
360
361 *result = val;
362 return p;
363}
364
365static const char* parse_decimal(const char* input, const char* limit, int* result)
366{
367 return parse_number(input, limit, 10, result);
368}
369
370#ifdef __arm__
371static const char* parse_hexadecimal(const char* input, const char* limit, int* result)
372{
373 return parse_number(input, limit, 16, result);
374}
375#endif /* __arm__ */
376
377/* This small data type is used to represent a CPU list / mask, as read
378 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
379 *
380 * For now, we don't expect more than 32 cores on mobile devices, so keep
381 * everything simple.
382 */
383typedef struct
384{
385 uint32_t mask;
386} CpuList;
387
388static __inline__ void cpulist_init(CpuList* list)
389{
390 list->mask = 0;
391}
392
393static __inline__ void cpulist_and(CpuList* list1, CpuList* list2)
394{
395 list1->mask &= list2->mask;
396}
397
398static __inline__ void cpulist_set(CpuList* list, int index)
399{
400 if ((unsigned)index < 32)
401 {
402 list->mask |= (uint32_t)(1U << index);
403 }
404}
405
406static __inline__ int cpulist_count(CpuList* list)
407{
408 return __builtin_popcount(list->mask);
409}
410
411/* Parse a textual list of cpus and store the result inside a CpuList object.
412 * Input format is the following:
413 * - comma-separated list of items (no spaces)
414 * - each item is either a single decimal number (cpu index), or a range made
415 * of two numbers separated by a single dash (-). Ranges are inclusive.
416 *
417 * Examples: 0
418 * 2,4-127,128-143
419 * 0-1
420 */
421static void cpulist_parse(CpuList* list, const char* line, int line_len)
422{
423 const char* p = line;
424 const char* end = p + line_len;
425 const char* q;
426
427 /* NOTE: the input line coming from sysfs typically contains a
428 * trailing newline, so take care of it in the code below
429 */
430 while (p < end && *p != '\n')
431 {
432 int start_value = 0;
433 int end_value = 0;
434 /* Find the end of current item, and put it into 'q' */
435 q = memchr(p, ',', end - p);
436
437 if (q == NULL)
438 {
439 q = end;
440 }
441
442 /* Get first value */
443 p = parse_decimal(p, q, &start_value);
444
445 if (p == NULL)
446 goto BAD_FORMAT;
447
448 end_value = start_value;
449
450 /* If we're not at the end of the item, expect a dash and
451 * and integer; extract end value.
452 */
453 if (p < q && *p == '-')
454 {
455 p = parse_decimal(p + 1, q, &end_value);
456
457 if (p == NULL)
458 goto BAD_FORMAT;
459 }
460
461 /* Set bits CPU list bits */
462 for (int val = start_value; val <= end_value; val++)
463 {
464 cpulist_set(list, val);
465 }
466
467 /* Jump to next item */
468 p = q;
469
470 if (p < end)
471 p++;
472 }
473
474BAD_FORMAT:;
475}
476
477/* Read a CPU list from one sysfs file */
478static void cpulist_read_from(CpuList* list, const char* filename)
479{
480 char file[64];
481 int filelen;
482 cpulist_init(list);
483 filelen = read_file(filename, file, sizeof file);
484
485 if (filelen < 0)
486 {
487 char ebuffer[256] = { 0 };
488 D("Could not read %s: %s\n", filename, winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
489 return;
490 }
491
492 cpulist_parse(list, file, filelen);
493}
494#if defined(__aarch64__)
495// see <uapi/asm/hwcap.h> kernel header
496#define HWCAP_FP (1 << 0)
497#define HWCAP_ASIMD (1 << 1)
498#define HWCAP_AES (1 << 3)
499#define HWCAP_PMULL (1 << 4)
500#define HWCAP_SHA1 (1 << 5)
501#define HWCAP_SHA2 (1 << 6)
502#define HWCAP_CRC32 (1 << 7)
503#endif
504
505#if defined(__arm__)
506
507// See <asm/hwcap.h> kernel header.
508#define HWCAP_VFP (1 << 6)
509#define HWCAP_IWMMXT (1 << 9)
510#define HWCAP_NEON (1 << 12)
511#define HWCAP_VFPv3 (1 << 13)
512#define HWCAP_VFPv3D16 (1 << 14)
513#define HWCAP_VFPv4 (1 << 16)
514#define HWCAP_IDIVA (1 << 17)
515#define HWCAP_IDIVT (1 << 18)
516
517// see <uapi/asm/hwcap.h> kernel header
518#define HWCAP2_AES (1 << 0)
519#define HWCAP2_PMULL (1 << 1)
520#define HWCAP2_SHA1 (1 << 2)
521#define HWCAP2_SHA2 (1 << 3)
522#define HWCAP2_CRC32 (1 << 4)
523
524// This is the list of 32-bit ARMv7 optional features that are _always_
525// supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
526// Manual.
527#define HWCAP_SET_FOR_ARMV8 \
528 (HWCAP_VFP | HWCAP_NEON | HWCAP_VFPv3 | HWCAP_VFPv4 | HWCAP_IDIVA | HWCAP_IDIVT)
529#endif
530
531#if defined(__mips__)
532// see <uapi/asm/hwcap.h> kernel header
533#define HWCAP_MIPS_R6 (1 << 0)
534#define HWCAP_MIPS_MSA (1 << 1)
535#endif
536
537#if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
538
539#define AT_HWCAP 16
540#define AT_HWCAP2 26
541
542// Probe the system's C library for a 'getauxval' function and call it if
543// it exits, or return 0 for failure. This function is available since API
544// level 20.
545//
546// This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
547// edge case where some NDK developers use headers for a platform that is
548// newer than the one really targeted by their application.
549// This is typically done to use newer native APIs only when running on more
550// recent Android versions, and requires careful symbol management.
551//
552// Note that getauxval() can't really be re-implemented here, because
553// its implementation does not parse /proc/self/auxv. Instead it depends
554// on values that are passed by the kernel at process-init time to the
555// C runtime initialization layer.
556static uint32_t get_elf_hwcap_from_getauxval(int hwcap_type)
557{
558 typedef unsigned long getauxval_func_t(unsigned long);
559 dlerror();
560 void* libc_handle = dlopen("libc.so", RTLD_NOW);
561
562 if (!libc_handle)
563 {
564 D("Could not dlopen() C library: %s\n", dlerror());
565 return 0;
566 }
567
568 uint32_t ret = 0;
569 getauxval_func_t* func = (getauxval_func_t*)dlsym(libc_handle, "getauxval");
570
571 if (!func)
572 {
573 D("Could not find getauxval() in C library\n");
574 }
575 else
576 {
577 // Note: getauxval() returns 0 on failure. Doesn't touch errno.
578 ret = (uint32_t)(*func)(hwcap_type);
579 }
580
581 dlclose(libc_handle);
582 return ret;
583}
584#endif
585
586#if defined(__arm__)
587// Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
588// current CPU. Note that this file is not accessible from regular
589// application processes on some Android platform releases.
590// On success, return new ELF hwcaps, or 0 on failure.
591static uint32_t get_elf_hwcap_from_proc_self_auxv(void)
592{
593 const char filepath[] = "/proc/self/auxv";
594 int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
595
596 if (fd < 0)
597 {
598 char ebuffer[256] = { 0 };
599 D("Could not open %s: %s\n", filepath, winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
600 return 0;
601 }
602
603 struct
604 {
605 uint32_t tag;
606 uint32_t value;
607 } entry;
608
609 uint32_t result = 0;
610
611 for (;;)
612 {
613 int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
614
615 if (ret < 0)
616 {
617 char ebuffer[256] = { 0 };
618 D("Error while reading %s: %s\n", filepath,
619 winpr_strerror(errno, ebuffer, sizeof(ebuffer)));
620 break;
621 }
622
623 // Detect end of list.
624 if (ret == 0 || (entry.tag == 0 && entry.value == 0))
625 break;
626
627 if (entry.tag == AT_HWCAP)
628 {
629 result = entry.value;
630 break;
631 }
632 }
633
634 close(fd);
635 return result;
636}
637
638/* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
639 * This works by parsing the 'Features' line, which lists which optional
640 * features the device's CPU supports, on top of its reference
641 * architecture.
642 */
643static uint32_t get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len)
644{
645 uint32_t hwcaps = 0;
646 long architecture = 0;
647 char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
648
649 if (cpuArch)
650 {
651 architecture = strtol(cpuArch, NULL, 10);
652 free(cpuArch);
653
654 if (architecture >= 8L)
655 {
656 // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
657 // The 'Features' line only lists the optional features that the
658 // device's CPU supports, compared to its reference architecture
659 // which are of no use for this process.
660 D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
661 return HWCAP_SET_FOR_ARMV8;
662 }
663 }
664
665 char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
666
667 if (cpuFeatures != NULL)
668 {
669 D("Found cpuFeatures = '%s'\n", cpuFeatures);
670
671 if (has_list_item(cpuFeatures, "vfp"))
672 hwcaps |= HWCAP_VFP;
673
674 if (has_list_item(cpuFeatures, "vfpv3"))
675 hwcaps |= HWCAP_VFPv3;
676
677 if (has_list_item(cpuFeatures, "vfpv3d16"))
678 hwcaps |= HWCAP_VFPv3D16;
679
680 if (has_list_item(cpuFeatures, "vfpv4"))
681 hwcaps |= HWCAP_VFPv4;
682
683 if (has_list_item(cpuFeatures, "neon"))
684 hwcaps |= HWCAP_NEON;
685
686 if (has_list_item(cpuFeatures, "idiva"))
687 hwcaps |= HWCAP_IDIVA;
688
689 if (has_list_item(cpuFeatures, "idivt"))
690 hwcaps |= HWCAP_IDIVT;
691
692 if (has_list_item(cpuFeatures, "idiv"))
693 hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
694
695 if (has_list_item(cpuFeatures, "iwmmxt"))
696 hwcaps |= HWCAP_IWMMXT;
697
698 free(cpuFeatures);
699 }
700
701 return hwcaps;
702}
703#endif /* __arm__ */
704
705/* Return the number of cpus present on a given device.
706 *
707 * To handle all weird kernel configurations, we need to compute the
708 * intersection of the 'present' and 'possible' CPU lists and count
709 * the result.
710 */
711static int get_cpu_count(void)
712{
713 CpuList cpus_present[1];
714 CpuList cpus_possible[1];
715 cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
716 cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
717 /* Compute the intersection of both sets to get the actual number of
718 * CPU cores that can be used on this device by the kernel.
719 */
720 cpulist_and(cpus_present, cpus_possible);
721 return cpulist_count(cpus_present);
722}
723
724static void android_cpuInitFamily(void)
725{
726#if defined(__arm__)
727 g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
728#elif defined(__i386__)
729 g_cpuFamily = ANDROID_CPU_FAMILY_X86;
730#elif defined(__mips64)
731 /* Needs to be before __mips__ since the compiler defines both */
732 g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
733#elif defined(__mips__)
734 g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
735#elif defined(__aarch64__)
736 g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
737#elif defined(__x86_64__)
738 g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
739#else
740 g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
741#endif
742}
743
744static void android_cpuInit(void)
745{
746 char* cpuinfo = NULL;
747 int cpuinfo_len;
748 android_cpuInitFamily();
749 g_cpuFeatures = 0;
750 g_cpuCount = 1;
751 g_inited = 1;
752 cpuinfo_len = get_file_size("/proc/cpuinfo");
753
754 if (cpuinfo_len < 0)
755 {
756 D("cpuinfo_len cannot be computed!");
757 return;
758 }
759
760 cpuinfo = malloc(cpuinfo_len);
761
762 if (cpuinfo == NULL)
763 {
764 D("cpuinfo buffer could not be allocated");
765 return;
766 }
767
768 cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
769 D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len, cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
770
771 if (cpuinfo_len < 0) /* should not happen */
772 {
773 free(cpuinfo);
774 return;
775 }
776
777 /* Count the CPU cores, the value may be 0 for single-core CPUs */
778 g_cpuCount = get_cpu_count();
779
780 if (g_cpuCount == 0)
781 {
782 g_cpuCount = 1;
783 }
784
785 D("found cpuCount = %d\n", g_cpuCount);
786#ifdef __arm__
787 {
788 /* Extract architecture from the "CPU Architecture" field.
789 * The list is well-known, unlike the the output of
790 * the 'Processor' field which can vary greatly.
791 *
792 * See the definition of the 'proc_arch' array in
793 * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
794 * same file.
795 */
796 char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
797
798 if (cpuArch != NULL)
799 {
800 char* end;
801 long archNumber;
802 int hasARMv7 = 0;
803 D("found cpuArch = '%s'\n", cpuArch);
804 /* read the initial decimal number, ignore the rest */
805 archNumber = strtol(cpuArch, &end, 10);
806
807 /* Note that ARMv8 is upwards compatible with ARMv7. */
808 if (end > cpuArch && archNumber >= 7)
809 {
810 hasARMv7 = 1;
811 }
812
813 /* Unfortunately, it seems that certain ARMv6-based CPUs
814 * report an incorrect architecture number of 7!
815 *
816 * See http://code.google.com/p/android/issues/detail?id=10812
817 *
818 * We try to correct this by looking at the 'elf_format'
819 * field reported by the 'Processor' field, which is of the
820 * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
821 * an ARMv6-one.
822 */
823 if (hasARMv7)
824 {
825 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Processor");
826
827 if (cpuProc != NULL)
828 {
829 D("found cpuProc = '%s'\n", cpuProc);
830
831 if (has_list_item(cpuProc, "(v6l)"))
832 {
833 D("CPU processor and architecture mismatch!!\n");
834 hasARMv7 = 0;
835 }
836
837 free(cpuProc);
838 }
839 }
840
841 if (hasARMv7)
842 {
843 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
844 }
845
846 /* The LDREX / STREX instructions are available from ARMv6 */
847 if (archNumber >= 6)
848 {
849 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
850 }
851
852 free(cpuArch);
853 }
854
855 /* Extract the list of CPU features from ELF hwcaps */
856 uint32_t hwcaps = 0;
857 hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
858
859 if (!hwcaps)
860 {
861 D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
862 hwcaps = get_elf_hwcap_from_proc_self_auxv();
863 }
864
865 if (!hwcaps)
866 {
867 // Parsing /proc/self/auxv will fail from regular application
868 // processes on some Android platform versions, when this happens
869 // parse proc/cpuinfo instead.
870 D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
871 hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
872 }
873
874 if (hwcaps != 0)
875 {
876 int has_vfp = (hwcaps & HWCAP_VFP);
877 int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
878 int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
879 int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
880 int has_neon = (hwcaps & HWCAP_NEON);
881 int has_idiva = (hwcaps & HWCAP_IDIVA);
882 int has_idivt = (hwcaps & HWCAP_IDIVT);
883 int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
884
885 // The kernel does a poor job at ensuring consistency when
886 // describing CPU features. So lots of guessing is needed.
887
888 // 'vfpv4' implies VFPv3|VFP_FMA|FP16
889 if (has_vfpv4)
890 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
891 ANDROID_CPU_ARM_FEATURE_VFP_FMA;
892
893 // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
894 // a value of 'vfpv3' doesn't necessarily mean that the D32
895 // feature is present, so be conservative. All CPUs in the
896 // field that support D32 also support NEON, so this should
897 // not be a problem in practice.
898 if (has_vfpv3 || has_vfpv3d16)
899 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
900
901 // 'vfp' is super ambiguous. Depending on the kernel, it can
902 // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
903 if (has_vfp)
904 {
905 if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
906 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
907 else
908 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
909 }
910
911 // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
912 if (has_neon)
913 {
914 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | ANDROID_CPU_ARM_FEATURE_NEON |
915 ANDROID_CPU_ARM_FEATURE_VFP_D32;
916
917 if (has_vfpv4)
918 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
919 }
920
921 // VFPv3 implies VFPv2 and ARMv7
922 if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
923 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 | ANDROID_CPU_ARM_FEATURE_ARMv7;
924
925 if (has_idiva)
926 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
927
928 if (has_idivt)
929 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
930
931 if (has_iwmmxt)
932 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
933 }
934
935 /* Extract the list of CPU features from ELF hwcaps2 */
936 uint32_t hwcaps2 = 0;
937 hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
938
939 if (hwcaps2 != 0)
940 {
941 int has_aes = (hwcaps2 & HWCAP2_AES);
942 int has_pmull = (hwcaps2 & HWCAP2_PMULL);
943 int has_sha1 = (hwcaps2 & HWCAP2_SHA1);
944 int has_sha2 = (hwcaps2 & HWCAP2_SHA2);
945 int has_crc32 = (hwcaps2 & HWCAP2_CRC32);
946
947 if (has_aes)
948 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
949
950 if (has_pmull)
951 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
952
953 if (has_sha1)
954 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
955
956 if (has_sha2)
957 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
958
959 if (has_crc32)
960 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
961 }
962
963 /* Extract the cpuid value from various fields */
964 // The CPUID value is broken up in several entries in /proc/cpuinfo.
965 // This table is used to rebuild it from the entries.
966 static const struct CpuIdEntry
967 {
968 const char* field;
969 char format;
970 char bit_lshift;
971 char bit_length;
972 } cpu_id_entries[] = {
973 { "CPU implementer", 'x', 24, 8 },
974 { "CPU variant", 'x', 20, 4 },
975 { "CPU part", 'x', 4, 12 },
976 { "CPU revision", 'd', 0, 4 },
977 };
978 D("Parsing /proc/cpuinfo to recover CPUID\n");
979
980 for (size_t i = 0; i < sizeof(cpu_id_entries) / sizeof(cpu_id_entries[0]); ++i)
981 {
982 const struct CpuIdEntry* entry = &cpu_id_entries[i];
983 char* value = extract_cpuinfo_field(cpuinfo, cpuinfo_len, entry->field);
984
985 if (value == NULL)
986 continue;
987
988 D("field=%s value='%s'\n", entry->field, value);
989 char* value_end = value + strlen(value);
990 int val = 0;
991 const char* start = value;
992 const char* p;
993
994 if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X'))
995 {
996 start += 2;
997 p = parse_hexadecimal(start, value_end, &val);
998 }
999 else if (entry->format == 'x')
1000 p = parse_hexadecimal(value, value_end, &val);
1001 else
1002 p = parse_decimal(value, value_end, &val);
1003
1004 if (p > (const char*)start)
1005 {
1006 val &= ((1 << entry->bit_length) - 1);
1007 val <<= entry->bit_lshift;
1008 g_cpuIdArm |= (uint32_t)val;
1009 }
1010
1011 free(value);
1012 }
1013
1014 // Handle kernel configuration bugs that prevent the correct
1015 // reporting of CPU features.
1016 static const struct CpuFix
1017 {
1018 uint32_t cpuid;
1019 uint64_t or_flags;
1020 } cpu_fixes[] = {
1021 /* The Nexus 4 (Qualcomm Krait) kernel configuration
1022 * forgets to report IDIV support. */
1023 { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM | ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
1024 { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM | ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
1025 };
1026
1027 for (size_t n = 0; n < sizeof(cpu_fixes) / sizeof(cpu_fixes[0]); ++n)
1028 {
1029 const struct CpuFix* entry = &cpu_fixes[n];
1030
1031 if (g_cpuIdArm == entry->cpuid)
1032 g_cpuFeatures |= entry->or_flags;
1033 }
1034
1035 // Special case: The emulator-specific Android 4.2 kernel fails
1036 // to report support for the 32-bit ARM IDIV instruction.
1037 // Technically, this is a feature of the virtual CPU implemented
1038 // by the emulator. Note that it could also support Thumb IDIV
1039 // in the future, and this will have to be slightly updated.
1040 char* hardware = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Hardware");
1041
1042 if (hardware)
1043 {
1044 if (!strcmp(hardware, "Goldfish") && g_cpuIdArm == 0x4100c080 &&
1045 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0)
1046 {
1047 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
1048 }
1049
1050 free(hardware);
1051 }
1052 }
1053#endif /* __arm__ */
1054#ifdef __aarch64__
1055 {
1056 /* Extract the list of CPU features from ELF hwcaps */
1057 uint32_t hwcaps = 0;
1058 hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1059
1060 if (hwcaps != 0)
1061 {
1062 int has_fp = (hwcaps & HWCAP_FP);
1063 int has_asimd = (hwcaps & HWCAP_ASIMD);
1064 int has_aes = (hwcaps & HWCAP_AES);
1065 int has_pmull = (hwcaps & HWCAP_PMULL);
1066 int has_sha1 = (hwcaps & HWCAP_SHA1);
1067 int has_sha2 = (hwcaps & HWCAP_SHA2);
1068 int has_crc32 = (hwcaps & HWCAP_CRC32);
1069
1070 if (has_fp == 0)
1071 {
1072 D("ERROR: Floating-point unit missing, but is required by Android on AArch64 "
1073 "CPUs\n");
1074 }
1075
1076 if (has_asimd == 0)
1077 {
1078 D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
1079 }
1080
1081 if (has_fp)
1082 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
1083
1084 if (has_asimd)
1085 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
1086
1087 if (has_aes)
1088 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
1089
1090 if (has_pmull)
1091 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
1092
1093 if (has_sha1)
1094 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
1095
1096 if (has_sha2)
1097 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
1098
1099 if (has_crc32)
1100 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
1101 }
1102 }
1103#endif /* __aarch64__ */
1104#if defined(__i386__) || defined(__x86_64__)
1105 int regs[4];
1106 /* According to http://en.wikipedia.org/wiki/CPUID */
1107#define VENDOR_INTEL_b 0x756e6547
1108#define VENDOR_INTEL_c 0x6c65746e
1109#define VENDOR_INTEL_d 0x49656e69
1110 x86_cpuid(0, regs);
1111 int vendorIsIntel =
1112 (regs[1] == VENDOR_INTEL_b && regs[2] == VENDOR_INTEL_c && regs[3] == VENDOR_INTEL_d);
1113 x86_cpuid(1, regs);
1114
1115 if ((regs[2] & (1 << 9)) != 0)
1116 {
1117 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
1118 }
1119
1120 if ((regs[2] & (1 << 23)) != 0)
1121 {
1122 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
1123 }
1124
1125 if ((regs[2] & (1 << 19)) != 0)
1126 {
1127 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_1;
1128 }
1129
1130 if ((regs[2] & (1 << 20)) != 0)
1131 {
1132 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_2;
1133 }
1134
1135 if (vendorIsIntel && (regs[2] & (1 << 22)) != 0)
1136 {
1137 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1138 }
1139
1140 if ((regs[2] & (1 << 25)) != 0)
1141 {
1142 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AES_NI;
1143 }
1144
1145 if ((regs[2] & (1 << 28)) != 0)
1146 {
1147 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX;
1148 }
1149
1150 if ((regs[2] & (1 << 30)) != 0)
1151 {
1152 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_RDRAND;
1153 }
1154
1155 x86_cpuid(7, regs);
1156
1157 if ((regs[1] & (1 << 5)) != 0)
1158 {
1159 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX2;
1160 }
1161
1162 if ((regs[1] & (1 << 29)) != 0)
1163 {
1164 g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SHA_NI;
1165 }
1166
1167#endif
1168#if defined(__mips__)
1169 {
1170 /* MIPS and MIPS64 */
1171 /* Extract the list of CPU features from ELF hwcaps */
1172 uint32_t hwcaps = 0;
1173 hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1174
1175 if (hwcaps != 0)
1176 {
1177 int has_r6 = (hwcaps & HWCAP_MIPS_R6);
1178 int has_msa = (hwcaps & HWCAP_MIPS_MSA);
1179
1180 if (has_r6)
1181 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
1182
1183 if (has_msa)
1184 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
1185 }
1186 }
1187#endif /* __mips__ */
1188 free(cpuinfo);
1189}
1190
1191AndroidCpuFamily android_getCpuFamily(void)
1192{
1193 pthread_once(&g_once, android_cpuInit);
1194 return g_cpuFamily;
1195}
1196
1197uint64_t android_getCpuFeatures(void)
1198{
1199 pthread_once(&g_once, android_cpuInit);
1200 return g_cpuFeatures;
1201}
1202
1203int android_getCpuCount(void)
1204{
1205 pthread_once(&g_once, android_cpuInit);
1206 return g_cpuCount;
1207}
1208
1209static void android_cpuInitDummy(void)
1210{
1211 g_inited = 1;
1212}
1213
1214int android_setCpu(int cpu_count, uint64_t cpu_features)
1215{
1216 /* Fail if the library was already initialized. */
1217 if (g_inited)
1218 return 0;
1219
1220 android_cpuInitFamily();
1221 g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1222 g_cpuFeatures = cpu_features;
1223 pthread_once(&g_once, android_cpuInitDummy);
1224 return 1;
1225}
1226
1227#ifdef __arm__
1228uint32_t android_getCpuIdArm(void)
1229{
1230 pthread_once(&g_once, android_cpuInit);
1231 return g_cpuIdArm;
1232}
1233
1234int android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1235{
1236 if (!android_setCpu(cpu_count, cpu_features))
1237 return 0;
1238
1239 g_cpuIdArm = cpu_id;
1240 return 1;
1241}
1242#endif /* __arm__ */
1243
1244/*
1245 * Technical note: Making sense of ARM's FPU architecture versions.
1246 *
1247 * FPA was ARM's first attempt at an FPU architecture. There is no Android
1248 * device that actually uses it since this technology was already obsolete
1249 * when the project started. If you see references to FPA instructions
1250 * somewhere, you can be sure that this doesn't apply to Android at all.
1251 *
1252 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1253 * new versions / additions to it. ARM considers this obsolete right now,
1254 * and no known Android device implements it either.
1255 *
1256 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1257 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1258 * supporting the 'armeabi' ABI doesn't necessarily support these.
1259 *
1260 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1261 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1262 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1263 * that it provides 16 double-precision FPU registers (d0-d15) and 32
1264 * single-precision ones (s0-s31) which happen to be mapped to the same
1265 * register banks.
1266 *
1267 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1268 * additional double precision registers (d16-d31). Note that there are
1269 * still only 32 single precision registers.
1270 *
1271 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1272 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1273 * are not supported by Android. Note that it is not compatible with VFPv2.
1274 *
1275 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1276 * depending on context. For example GCC uses it for VFPv3-D32, but
1277 * the Linux kernel code uses it for VFPv3-D16 (especially in
1278 * /proc/cpuinfo). Always try to use the full designation when
1279 * possible.
1280 *
1281 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1282 * instructions to perform parallel computations on vectors of 8, 16,
1283 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1284 * NEON registers are also mapped to the same register banks.
1285 *
1286 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1287 * perform fused multiply-accumulate on VFP registers, as well as
1288 * half-precision (16-bit) conversion operations.
1289 *
1290 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1291 * registers.
1292 *
1293 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1294 * multiply-accumulate instructions that work on the NEON registers.
1295 *
1296 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1297 * depending on context.
1298 *
1299 * The following information was determined by scanning the binutils-2.22
1300 * sources:
1301 *
1302 * Basic VFP instruction subsets:
1303 *
1304 * #define FPU_VFP_EXT_V1xD 0x08000000 // Base VFP instruction set.
1305 * #define FPU_VFP_EXT_V1 0x04000000 // Double-precision insns.
1306 * #define FPU_VFP_EXT_V2 0x02000000 // ARM10E VFPr1.
1307 * #define FPU_VFP_EXT_V3xD 0x01000000 // VFPv3 single-precision.
1308 * #define FPU_VFP_EXT_V3 0x00800000 // VFPv3 double-precision.
1309 * #define FPU_NEON_EXT_V1 0x00400000 // Neon (SIMD) insns.
1310 * #define FPU_VFP_EXT_D32 0x00200000 // Registers D16-D31.
1311 * #define FPU_VFP_EXT_FP16 0x00100000 // Half-precision extensions.
1312 * #define FPU_NEON_EXT_FMA 0x00080000 // Neon fused multiply-add
1313 * #define FPU_VFP_EXT_FMA 0x00040000 // VFP fused multiply-add
1314 *
1315 * FPU types (excluding NEON)
1316 *
1317 * FPU_VFP_V1xD (EXT_V1xD)
1318 * |
1319 * +--------------------------+
1320 * | |
1321 * FPU_VFP_V1 (+EXT_V1) FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1322 * | |
1323 * | |
1324 * FPU_VFP_V2 (+EXT_V2) FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1325 * |
1326 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1327 * |
1328 * +--------------------------+
1329 * | |
1330 * FPU_VFP_V3 (+EXT_D32) FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1331 * | |
1332 * | FPU_VFP_V4 (+EXT_D32)
1333 * |
1334 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1335 *
1336 * VFP architectures:
1337 *
1338 * ARCH_VFP_V1xD (EXT_V1xD)
1339 * |
1340 * +------------------+
1341 * | |
1342 * | ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1343 * | |
1344 * | ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1345 * | |
1346 * | ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1347 * |
1348 * ARCH_VFP_V1 (+EXT_V1)
1349 * |
1350 * ARCH_VFP_V2 (+EXT_V2)
1351 * |
1352 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1353 * |
1354 * +-------------------+
1355 * | |
1356 * | ARCH_VFP_V3D16_FP16 (+EXT_FP16)
1357 * |
1358 * +-------------------+
1359 * | |
1360 * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1361 * | |
1362 * | ARCH_VFP_V4 (+EXT_D32)
1363 * | |
1364 * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1365 * |
1366 * ARCH_VFP_V3 (+EXT_D32)
1367 * |
1368 * +-------------------+
1369 * | |
1370 * | ARCH_VFP_V3_FP16 (+EXT_FP16)
1371 * |
1372 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1373 * |
1374 * ARCH_NEON_FP16 (+EXT_FP16)
1375 *
1376 * -fpu=<name> values and their correspondence with FPU architectures above:
1377 *
1378 * {"vfp", FPU_ARCH_VFP_V2},
1379 * {"vfp9", FPU_ARCH_VFP_V2},
1380 * {"vfp3", FPU_ARCH_VFP_V3}, // For backwards compatibility.
1381 * {"vfp10", FPU_ARCH_VFP_V2},
1382 * {"vfp10-r0", FPU_ARCH_VFP_V1},
1383 * {"vfpxd", FPU_ARCH_VFP_V1xD},
1384 * {"vfpv2", FPU_ARCH_VFP_V2},
1385 * {"vfpv3", FPU_ARCH_VFP_V3},
1386 * {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
1387 * {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
1388 * {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
1389 * {"vfpv3xd", FPU_ARCH_VFP_V3xD},
1390 * {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
1391 * {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1392 * {"neon-fp16", FPU_ARCH_NEON_FP16},
1393 * {"vfpv4", FPU_ARCH_VFP_V4},
1394 * {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
1395 * {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
1396 * {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
1397 *
1398 *
1399 * Simplified diagram that only includes FPUs supported by Android:
1400 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1401 * all others are optional and must be probed at runtime.
1402 *
1403 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1404 * |
1405 * +-------------------+
1406 * | |
1407 * | ARCH_VFP_V3D16_FP16 (+EXT_FP16)
1408 * |
1409 * +-------------------+
1410 * | |
1411 * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1412 * | |
1413 * | ARCH_VFP_V4 (+EXT_D32)
1414 * | |
1415 * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1416 * |
1417 * ARCH_VFP_V3 (+EXT_D32)
1418 * |
1419 * +-------------------+
1420 * | |
1421 * | ARCH_VFP_V3_FP16 (+EXT_FP16)
1422 * |
1423 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1424 * |
1425 * ARCH_NEON_FP16 (+EXT_FP16)
1426 *
1427 */